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TILT-ROTOR FLUTTER CONTROL IN CRUISE FLIGHT 

Ken-ichi Nasu* 
Ames Research Center 

SUMMARY 

Tilt-rotor flutter control under cruising operation is analyzed. The rotor model con- 
sists of a straight fixed wing, a pylon attached to the wingtip, and a three-bladed rotor. 
The wing is cantilevered to  the fuselage and is allowed to bend forward and upward. It 
also has a torsional degree of freedom about the elastic axis. Each rotor blade has two 
bending degrees of freedom. Feedback of wingtip velocity and acceleration to cyclic pitch 
is investigated for flutter control, using strip theory and linearized equations of motion. 
To determine the feedback gain, an eigenvalue analysis is performed. A second, indepen- 
dent, timewise calculation is conducted to evaluate the control law while employing more 
sophisticated aerodynamics. The effectiveness of flutter control by cyclic pitch change was 
confirmed. 

NOMENCLATURE 

A blade aspect ratio 

A i  j 
A W  wing aspect ratio 
a e  

ai, aj 

a j k  

a, 

defined in equations (55)  through (61) for k = 1,. . . ,7 

position of elastic axis from leading edge, nondimensionalized by wing 
chord 
ith, j th  generalized coordinate for wing deformation 
kth generalize coordinate for the wing’s j t h  deformation mode: 
u j ,  t c j ,  aj,&j,aj for k = 1,. . . , 5 ,  respectively 
position of pitch axis from leading edge, nondimensionalized by wing 
chord 

* National Research Council Research Associate 

1 



BC 

B" 

C 

C W  

D 

d 
dw 
E* 

fm 

f Z  

fz 

Gi 

h 
1 9  

J B  

matrix, containing virtual work on blade caused by lateral cyclic 
pitch 
matrix, containing virtual work on blade caused by longitudinal cyclic 
pitch 
Theodorsen function 
sectional drag coefficient 
sectional lift slope 
sectional pitching moment coefficient 
position of center of gravity of wing from leading edge, nondimension- 
alized by wing chord 
blade chord 
wing chord 
physical state equation matrix, defined in equations (112) and (114), 
and in appendix B 
drag per unit length 
wing drag per unit length 
physical equation matrix for the nth order time derivative of state 
vector X; defined in equations (112) and (113), and in appendix B 
blade bending stiffness perpendicular to chordline 
blade bending stiffness along chordline 
wing bending stiffness perpendicular to chordline 
wing bending stiffness along chordline 
virtual work on wing caused by blade loading through the dth defor- 
mation mode 
wing torsional moment around the elastic axis (positive nose up) 
wing loading in x-direction per unit length (positive upward) 
wing loading in z-direction per unit length (positive forward) 
virtual work on wing caused by wing loading through the ith defor- 
mation mode 
wing torsional rigidity 
constant virtual work component on the wing, defined by equation 

virtual work component on the wing caused by the wing's j t h  defor- 
mation mode in term of generalized coordinates aj and bj for k = 2,3, 
respectively; defined by equations (106) and (107) 
mast height; distance between rotor and the wing elastic axis 
unit matrix of order nine 
blade flapping mass moment of inertia 

(105) 

I 
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It, 

I P P  

I P Y  

K& 

constant (independent of generalized coordinates) virtual work com- 
ponent on blade caused by the blade’s j t h  deformation mode; defined 
in equation (87) 
virtual work components on blade caused by the blade’s j t h  defor- 
mation mode in terms of generalized coordinates (ajk) ;  defined in 
equations (93) through (97) for k = 1, .  . . , 5  
virtual work component on blade defined in equation (98) 
virtual work component on blade defined in equation (99) 
virtual work components on blade caused by the wing’s j t h  defor- 
mation mode in terms of generalized coordinates (qjk); defined in 
equations (88) through (92) for k = 1, .  . . , 5  
pylon pitching mass moment of inertia about the intersection of pylon 
and wing elastic axis 
pylon rolling mass moment of inertia about the intersection of pylon 
and wing elastic axis 
pylon yawing mass moment of inertia about the intersection of pylon 
and wing elastic axis 
wing mass moment of inertia around elastic axis per unit length 
virtual work component on wing caused by the blade’s ith deformation 
mode in terms of generalized coordinates qjk; defined in appendix A 
f o r k =  1, ..., 5 
virtual work component on wing caused by cyclic pitch (cosine term); 
defined in appendix A 
virtual work component on wing caused by cyclic pith (sine term); 
defined in appendix A 
virtual work component on wing caused by the wing’s ith deformation 
mode in terms of generalized coordinates q j  k; defined in appendix A 
fork  = 1, ..., 5 
constant virtual work component defined in appendix A 
constants, associated with first, second order time derivatives of 
wing deformation variables - (u,  , w,, p , ) ,  for lateral and longitudinal 
cyclic pitch; equations (116), (117) 
wing semispan 
lift per unit length 
blade lift per unit length 
harmonic component of lift 
steady component of lift 
virtual mass component of lift 
wing lift per unit length 
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P 
P W ,  

Pw 
Pen 

Pzn 
Si, 
q j k  

Qni 
R 
Rc 
7 

TZ 

7.2 

S 
S R k j  

SW 
S W k j  

Mach number 
blade mass 
pylon mass 
blade mass per unit length 
wing torsional (pitching) moment around elastic axis per unit length 
harmonic component of wing pitching moment 
steady component of wing pitching moment 
virtual-mass component of wing pitching moment 
wing mass per unit iength 
number of blades 
wingtip pitch angle caused by ith deformation mode; equation (44) 
wingtip roll angle caused by ith deformation mode; equation (45) 
wingtip yaw angle caused by ith deformation mode; equation (43) 
virtual work done by the forces on nth blade through the ith defor- 
mation mode 
wingtip deformation matrix, containing Pwi terms, equation (126) 
ith mode of wing torsion deformation p w  
wing torsional deformation around the elastic axis (positive nose up) 
nth blade loading in the rotational plane (positive rotational direc- 
tion) 
nth blade loading out of rotational plane (positive forward) 
defined in equations (49) through (53) for k = 1 , .  . . , 5  
blade generalized coordinate for j t h  deformation mode: 
q j o , 4 J s , Q j c , Q j c , q 3 s  for k = 1, ... , 5 ,  respectively 
ith generalized coordinate for nth rotor blade deformation 
rotor radius 
radius at airfoil inboard section (rotor cut-out) 
rotor blade radial position from center of rotation 
pylon displacement in x-direction (positive upward) 
pylon displacement in z-direction (positive forward) 
stability matrix, equation (127) 
air loading component caused by blade’s j t h  deflection mode in terms 
of generalized coordinates ( q J ) ;  defined in equations (76) through (80 )  
for k = 1,  ..., 5 
wing area 
air loading component caused by wing’s j t h  deflection mode in terms 
of generalized coordinates ( a i ) ;  defined in equations (81) through ( 8 5 )  
for k = 1,  ..., 5 
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Vn 

vout 

static mass moment of wing around elastic axis per unit length, Sa = 

transformation matrix defined in equation (30) 
time 
air velocity at blade section 
ith mode of wing deformation u, 
induced velocity 
blade tip velocity 
wing upward deformation 
wingtip deformation matrix, containing Vwi terms, equation (124) 
airplane cruise velocity 
ith mode of blade deformation vn 
air velocity at rotor blade section 
ith mode of wing deformation vw 
defined in equation (7) 
defined in equation (8) 
downwash caused by wing 
in plane air-velocity component relative to blade caused by wing de- 
formation 
nth blade inplane deformation (positive in rotational direction ) 
out-of-plane air-velocity component relative to blade caused by wing 
deformation 
blade deformation velocity perpendicular to r ' x  fi + f 
wing deformation in x-direction (positive upward) 
wingtip deformation matrix, containing Wwi terms, equation (125) 
ith mode of blade deformation w 
zth mode of wing deformation w,  
defined in equation (9) 
defined in equation (10) . 
nth blade out-of-plane deformation (positive forward ) 
wing deformation in z-direction (positive forward) 
state vector, defined in equation (115) 
wingtip x-displacement caused by ith mode; equation (41) 
wing spanwise position from aircraft symmetry plane 
wingtip z-displacement caused by ith mode; equation (42) 
angle of attack 
geometric angle of attack 
induced velocity 
circulation 

m L & ( a e  - cg) 
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Superscript 

I 

0 

C 

S 

correction factor, given by ~ 1 ~ 2  

aspect ratio correction factor 
correction factor for spanwise location of vortex trailing 
blade pitch angle 
lateral cyclic pitch 
pitch control input (collective and cyclic) for nth blade 
longitunal cyclic pitch 
wing pitch angle 
collective pitch 
air density 
pylon pitching angle (positive nose up) 
pylon rolling angle (positive clockwise) 
pylon yawing angle (positive counterclockwise) 
inflow angle 
inclination of wing lift 
azimuth angle of nth blade 
rotor rotational velocity 
rotor ith modal natural frequency 
wing ith modal natural frequency 
transposed matrix 
complex variable 
time derivative z, 
spanwise derivative G, ~ y 2 ,  ay3, 

B a' a3 or radius-wise derivative s, p, p 
cos(+,,) term; cyclic pitch 
deformation mode a, j 
nth rotor blade 
constant term, i.e., independent of +n; collective pitch 
sin(+n) term; cyclic pitch 
wing tip 
zero square matrix of order nine 

a a' 
B 8' B3 

lateral cyclic pitch 
inverse matrix 
longitudinal cyclic pitch 
collective pitch 
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Subscripts 
B, b 

d 
dd 

P 

t ip 

w, w 

C 

i , j ,  k 

s 

U 

W 

z 
z 

blade 
lateral cyclic pitch 
indicates constant associated with first order time derivative 
indicates constant associated with second order time derivative 
indices 
wing torsional deformation 
longitudinal cyclic pitch 
wingtip 
wing upward deformation 
wing 
in K-constants: wing chordwise deformation 
in s-direction 
in z-direction 

INTRODUCTION 

The tilt-rotor aircraft is one of the promising transportation systems of the near future. 
It realizes a unique flight capability with its configuration. In the current trend toward 
using active control systems to widen the allowable flight conditions in fixed-wing aircraft 
or in conventional rotorcraft, it is of interest to consider active controls for the tilt-rotor 
aircraft to expand its flight elwelope, maneuverabily and versatility. Active control systems 
for rotorcraft have been studied for years, but until recently almost all such studies dealt 
with active control systems to reduce the vehicle’s gust response. It may be said that 
those studies have been aimed at coping with unusual phenomena which occur under 
normal operating conditions. In contrast, the objective of the flutter control studies is to 
enable the aircraft or rotorcraft to fly at  higher speeds, to  dive more steeply, or to allow 
a reduction of structural weight. In this report, tilt-rotor flutter control using rotor cyclic 
pitch is treated using the governing equations of reference 1. Determination of the control 
law is based on a harmonic method using wing tip deflection as the feedback. The control 
law determined in this way is further examined by timewise calculation using the local 
circulation method, where more precise aerodynamic theories are involved (references 2 
through 5 ) .  
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TILT-ROTOR MODEL AND EQUATIONS OF MOTION 

Figure 1 illustrates the tilt-rotor model considered here, which consists of a can- 
tilevered wing, a pylon, and rotor blades. This model is for airplane cruise mode, which 
is the major concern in this report. Operation in helicopter mode or tranition mode is 
not considered. The wing has one torsional and two bending degrees of freedom about the 
elastic axis. Wing dihedral angle and sweep angle are not considered. The pylon is rigidly 
attached at  the wingtip, its direction is assumed to be parallel to the cruising velocity, 
aiid at the end of the pyion is a hingeiess three-bladed rotor. The rotor blade also has 
a straight elastic axis, with elastic lead-lag and flapping degrees of freedom. In both the 
wing and the rotor blade, one of the principal elastic axes for bending coincides with the 
zero-lift- or chord-line. Aircraft motion is not considered. Since the wing is cantilevered 
to the fuselage, wing antisymmetric motion is also neglected (reference 6). 

-. 

One coordinate system is assumed fixed to the aircraft (figure 2); consequently, it is 
an inertia system. The X-axis is directed upward. The Y-axis coincides with the wing 
elastic axis. The Z-axis is directed forward. The aircraft cruising velocity V is in the Z 
direction, but the wing-elastic principal axes do not necessarily coincide with the X- and 
Z-axes. The origin of this coordinate system is located at the intersection of wing elastic 
axis and aircraft-symmetry plane. The rotor is located at a distance h forward from the 
wing elastic axis at the wingtip. 

Figure 3 shows the wing and blade deflections. The wing deflection is expressed 
in the X- and 2-direction, uw and w w  (positive upward and forward, respectively), and 
torsion about the elastic axis, p w  (positive nose up). The deflected position of the pylon 
root is described as ( u w , t i p ,  L, Ww,t ip )  or ( r z ,  L, r z ) .  The pylon direction is given by 
yawing, pitching, and rolling angles that are denoted by uy,  up, and vr, respectively, which 
are equal to w ~ , ~ ~ ~ ,  pw,tip and respectively. The rotor rotates clockwise for an 
observer looking forward and the nth rotor blade azimuth angle Gn is measured from the 
vertical position. This reference direction moves with the pylon rolling motion, so the 
blade azimuth angle in reference to the inertia system is given by $Jn + u, (figure 4). Blade 
deflection is expressed in terms of in-the-rotational-plane on (positive in the rotational 
direction) and out-of-the-rotational-plane wn (positive forward) bending. 

I 

The blade and wing deflections are described in series of natural modes (reference 7). 
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i 
(3) 

(4) 

( 5 )  

The equations of motion for the blade and wing generalized coordinates qni and ai are 
taken from reference 1. 

The equations for the deformation of the nth rotor blade are 

where P: is virtual work done by the forces on the nth blade through the zth deformation 
mode.  

For wing deformation the equation is 
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h 

h 
+ 2n( -VOjw&j,t;p)inj R sin $n 

+ n’(zVojWbj,t ip - WljPwj,tip)qnj cos+n 

+n2 [voj( Uwj,tip h + E P W j , t i p )  + Wljw&i,tip 

(11) = Fi + Gi 

where Fi and Gi are the virtual work done by forces on blade and wing, respectively, 
through the ith deformation mode. Natural modes Vi, Wi,  Uwi, Wwi, and Pwi, and cor- 
responding frequencies Wi and Wwi satisfy the following equations of motion and boundary 
and normalization conditions. 

Equations of motion for the natural modes of vibration are 

Blade: 

( E l c  sin’ 8 + EIB cos2 e) 
d’V, 

( E l c  - E I B )  sin’ 8cos’ 6- dr2 

- d ( l R m z d z $ ) - w ! m W i = O  dr 

( E l c  COS’ 8 + E I B  sin’ 0) ”I dr2 

dr2 
( E l c  - E I B )  sin’ 6cos’ 8 

Wing: 

d’Uwi -1 dY ’ ( E I ~ W  sin’ e,,, + EIBW cos’ e,) 
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1 d2 Ww; ( ~ I c w  - E I B W )  sin2 e, cos2 e, 
dY 

2 - wWi(mw - SmPwi) = O 

1 d2Wwi 
dY 

( E l c w  cos2 8 ,  + EIBW sin2 6,) 

( E I c w  - EIBw)  sin2 6, cos2 6, 

2 - wWim,Wwi = 0 

The equations for the boundary conditions are 

At the bladetip: 

At the bladeroot: 

I vi = 0 ,  vi' = 0,  wi = 0,  wi = 0 

At the wingroot: 

At the wingtip 
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+ N M B ~ ,  = 0 I 

The equations for the normalization conditions are 

Blade: 

Wing: 

+ N M B  [(uwi + h & ~ i ) ~  + h2 (W&i)2 + W k i ]  y= L 

+ - 2 [2 (ULJ2 + (w&i)2 + 4 y= L = 1 
N J B  

These equations do not have the expressions for the virtual work terms P:, Fi and Gi. 
These virtual work terms are directly related to the air loading and can be calculated under 
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various assumptions such as quasi-steady or unsteady aerodynamics, lifting line theory, or 
lifting surface theory. There are many possible options in calculating aerodynamic loading, 
and some of them restrict the validity of the final equations. For that reason, details of 
the air loading estimation are not given in this chapter and air loadings are assumed to 
be given. Methods to calculate the air loading to  complete the equations and to enable 
it to be numerically calculated are given in the following chapters. In the actual aircraft, 
gravitational force also contributes, but this effect is neglected in this report. However, the 
gravitational force depends only on the mass distribution, so it could be easily included. 

Since the blade is rigid in torsion, only lift and drag are considered in the blade 
equation of motions. The direction of lift and drag are determined by the direction of the 
inflow, including the rotor-induced velocity, which also depends upon the method of air 
loading estimation. To avoid additional assumptions, the blade air loading is given by the 
components in the rotational plane pen (positive in the rotational direction) and out-of- 
rotational plane p, ,  (positive forward), in the same directions as those used in defining 
the blade deformation. The forces acting in the radial direction are not considered since 
the blade is assumed to neither stretch nor shrink in that direction. Thus the virtual work 
in the equations of motion for the blade is given by 

As for the case of the blade, wing loading is also given without specifying any aerody- 
namic theory. It is given in cruising direction fz (positive forward) and upward direction 
fi.  The wing has a torsional degree of freedom and the torsional moment about the elastic 
axis is given by fm (positive nose up). Then the virtual work Gi is 

The virtual work on the wing by the blade air loading Fi is given using the wingtip 
positions U w i , t i p  and W W i , t i p ,  and its rotation P W i , t i p .  

13 



The variable (T) is the transformation matrix from the rotating coordinate system fixed 
to the blade before deformation to the inertia coordinate system fixed to the aircraft and 
is given by 

(30) 
0 0 

Blade and wing deformation are expressed by the summation of natural modes for 
each degree of freedom 

i= 1 
3 

i= 1 

3 

i= 1 
3 

i= 1 

3 

i= 1 

3 

i = l  

i= 1 

3 

i= 1 

3 

i= 1 



Even when a simple model is assumed, such as a fully articulated, nonelastic blade, the 
following formulation does not become simple because of the high inflow ratio. Each 
blade is controlled by cyclic and collective pitch; thus 8, and qni are composed of three 
components 

en = eo( t )  + e,(t) sin+, + e&) COS+, 

qni = qio(t) + gia(t) sin$, + qic(t) COS +n 

(46) 

(47) 

Substituting those relations into the equations of motion, the following relations are ob- 
tained 

Blade: 

Q i .  13 = -VliNrj + wOi- 4 R 
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(where Vo,, Vli, Wo;, and Wli are given by equations (7) through (10)) 

Wing: 

When one compares the terms multiplying the constant (independent of $n), sin$, and 
cos $, terms of equation (48) and the constant term of equation (54), the equations defining 
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qio,  q iS ,  qiC,  and ai are obtained 

3 

qio + w 2  qo + ~ f ~ i i j  = 

j= 1 

2 N A ; ~  N A ; ~  " 

ijiis + - q j c  2 
+ [ N A : ~  i j o  + ~ 

2 
j= 1 

N N + - 2 (Aij  + 2nAgj) 4 j s  + - 2 (ASj - 2RAij)  q j C  

N 
-I- - 2 (A;j - n A i j  - n 2 A g j )  q j c ]  

where subscripts ( )o, ( ) s in ,  and ( )cos indicate constant (independent of azimuth angle) 
terms, sin qn, and cos T,LJ~ terms, respectively, which are considered next. The number of 
blades N is assumed to be odd and greater than two in these equations, but the calculations 
for an even-bladed rotor can be done in a similar manner. 

The virtual work terms on the right hand side of equations of motion (62) through (65), 
need to be determined next. The terms should be in a linear form to apply the harmonic 
method. The deflection itself, rather than the deflection from the equilibrium state, is 
used in the linearization. Thus, the coefficients of generalized coordinates (i.e., coefficients 
for the first order in Taylor expansion) are different from those at a deflected equilibium 
point. However, the equilibrium value is not correct under the simplifications involved in 
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the air loading calculations, especially using a simple aerodynamic theory. This approach 
was chosen to avoid additional assumptions and to make the following calculations simple. 
Figure 5 gives schematic views of the air loading geometry on the blade and the wing. The 
blade aerodynamic force is calculated using quasi-steady theory. The Prandtl-Glauert rule 
is applied to correct for compressibility effects. The blade lift and drag per unit span, 1 
and d ,  respectively, and the in-plane and out-of-plane aerodynamic forces pen and pzn  are 
written as 

o,,t = 6, + i, + ri/,sin$, - r i / , ~ o s $ ~  (74) 
where oIn and v,,t are the air-velocity components relative to the blade caused by wing 
deformation, and q5 is the inflow angle. The induced velocity is neglected, since it is small in 
comparison with cruising velocity, and stability not static deflections is the major concern 
of this study. When v,, and v,,t are written in terms of natural modes and Fourier-type 
generalized coordinates, the following relations are obtained 

o,, sin 4 - vOut cos 6 
2 3 

= S B l j 9 j O  + S W l j U j  

j = 1  j = 1  

1 L1 j = 1  j = l  j = 1  

1 
2 2 3 3 

+ s B 2 3 9 3 ~  + SB33qjc  + SW2jUj  + S W 3 j a j  

2 2 3 3 

S B 4 j q j c  + s B 5 j q j s  + 1 S W d j U j  + S W 4 j a j  (75) 
3 = 1  3 = 1  j = 1  

18 
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4 = tan-’ ( g )  
The blade-angle-of-attack equation is 

(72) 
1 

cy = 8 - 4 + - (Vin s in4  - o,,t cosd) I V R  



The relations (66) through (85) give blade and wing air loading in terms of the gen- 
eralized coordinates. Substituting equations (66) and (67) into (27), the virtual work on 
the blade caused by the blade air loading is given as follows: 

2 3 

j= 1 j=1  j= 1 
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V R c S W S j  (Vi sin 4 - W ,  cos 4) dr (97) 
1 
2 

= - - p c l a  

The virtual work on the wing done by the rotor-blade air loading, given by equation (29), 
is 
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2 2 

K 8 , 9 j c  + Kk,jq,o 
j = l  j = 1  

2 2 

Details of K k k j ,  KBkj ,  K i ,  K& and K i  are given in appendix A. 

The wing aerodynamics are more complicated because of the pitching motion. When 
some aerodynamics theories are referred to as quasi-steady, the reference often means 
the usage of wing velocity relative to air, neglecting the effect of shed vortices. When 
pitching motion is introduced, wing velocity relative to the air varies along the chord. 
Aerodynamic force becomes dependent upon the point used to represent the wing motion. 
It is not appropriate to take the elastic axis as a representative point, since the air forces 
are not directly related to blade elasticity. In steady or unsteady aerodynamics (such as 
lifting-surface theory or Theodorsen’s theory) the three-quarter chord line is an important 
point to represent the boundary condition. In this formulation the boundary condition 
for the angle of attack is at the three-quarter chord line, and the effect of shed vortices is 
disregarded. The wing aerodynamic force is given by lift l , ,  drag d,  and pitching moment 
around the elastic axis me 

1 
2 

me = - p V 2 ~ , C ,  + I(ae - 0 . 2 5 ) ~ ~  

where C ,  is the pitching-moment coefficient about the aerodynamic center (which is as- 
sumed to fall on the one-quarter chord line), and a,c, is the distance between the leading 
edge and the wing elastic axis. Downwash caused by the wing itself is denoted by V d  and 
is given using the geometrical angle of attack 8 ,  and the wing-aspect ratio Aw 

The inclination of lift is expressed as 9, = V d / v .  When this inclination 
unchanged to be, the aerodynamic force on the wing is given in the X 

of lift is assumed 
and Y directions 
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as (lw cos 4w - o.5pv2cwcd sin ow, -Iw sin dw + o.5pv2C&d cos &). The virtual work on 
the wing done by the wing aerodynamic forces is given by 

j = l  j=1 

r" 1 

- lL ipV2cwCd(Uw; sin bw + Ww; cos 4w) dy 

After the virtual work is written in terms of generalized coordinates, and when one 
compares the terms multiplying the constant (independent of azimuth angle &), sin $n 

and cos & terms, the following equations are obtained for the blade equation of motion 
3 2 3 

j = 1  j=1 j = 1  

3 3 

j = 1  j= 1 
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j=1 j = 1  

3 3 

j= 1 j = 1  

2 
j=l j= 1 

2 

j=l j=l 

3 3 

j=l  j = 1  

In the same way, by substituting equations (100) and (104) into equation (54), the 
following equation is obtained from the constant term of the wing equation of motion: 

3 

iii + wt ia i  + - N ~ ~ N , ~ )  - ~k~~ - K' . I  bj w 13 
j=l 

3 

j = l  

2 2 2 

j = l  j= 1 j= 1 
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Final equations of motion for the generalized coordinates in equations (108) through (110) 
are written in the following form: 

E2X + E’X + EoX = D ( B o  8, (112) 

... 

... 

. . .  

t x = ( 4 1 0 ,  4 1 9 ,  Q l c ,  4 2 0 ,  429, 4 2 c ,  a 1 ,  a 2 ,  a3) 

Details of the elements E$ and Dij are given in appendix B. 

DESIGN OF CONTROL SYSTEM 

One approach to suppress coupled wing/rotor self-exited oscillation is active pitch 
control of the rotor blade (references 8-11). The tilt-rotor aircraft has other control sur- 
faces, such as a flaperon. However, only the pitch control using a conventional swashplate 
is considered here. The control system is a simple feedback system which uses wing- 
deflection feedback. The possibility of flutter control is investigated using a harmonic 
balance method. For simplicity, air loading is calculated here using a two-dimensional 
strip theory for both the wing and the rotor blade. In the following analysis, the gravita- 
tional force is neglected. When blade pitch control is introduced, the natural frequencies 
and corresponding mode shape of the system vary as a function of time. This change is 
not considered and the natural frequency and mode shape are assumed to be valid for a 
specific flight condition. 

This formulation uses generalized coordinates. What actually can be measured in 
flight is not a generalized coordinate but the actual deflection or its derivative, which is 
given by an infinite series of generalized coordinates. There are two choices in introducing a 
feedback control system: one uses a generalized coordinate as input for the control system, 
and the other uses an actual deflection or a rate of deflection. The latter is chosen here. 
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The wing deflection speed and the acceleration at the wingtip are used for the feedback 
input. Cyclic pitch control is given by 

8 s  = KusdUw, t ip  + K u s d d c w , t i p  

+ Kwcrdww,t ip  + K w e d d c w , t i p  

+ K p s d P w , t i p  + K p s d d i w , t i p  

Oc = KucdUw, t ip  K u c d d c w , t i p  

K w c d w w , t i p  -k K w c d d w w , t i p  

+ K p c d p w , t i p  + K p c d d j w , t i p  

Using this control law, the final equation is modified to 

E2'X + ElcX + EocX = D ( B o  0 O ) t  



The stability of the system, whose motion is given by equation (118), is defined by 
the eigenvalues of the following matrix S. 

where E2c1 ,  19, and 0 9  indicate the inverse matrix of E'', a unit matrix of order nine, and 
a zero square matrix of order nine, respectively. 

TIMEWISE CALCULATION 

To make a transient numerical calculation for the tilt-rotor's coupled-wing and blade 
deflections, and to evaluate the control law given in the previous section, a method is 
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given for independent timewise calculations. Determination of the control law is based 
on a rather simple theory. A more sophisticated aerodynamics theory and two or more 
natural oscillatory modes for each degree of freedom are employed in the transient analysis. 

Most of the aeroelastic studies conducted previously have been using quasi-steady and 
strip theory. In this study the aerodynamic force is calculated on the basis of an unsteady 
theory. The calculation is based on Weissinger’s concept through a vortex lattice method 
for the wing and on a local circulation method for the rotor blade (both with modifications 
to take the shed-vortex effect into account). Unsteady aerodynamics is a very complex 
problem even for a fixed wing with infinite aspect ratio. To get a precise solution requires 
large amounts of computer time. As for this study an efficient timewise calculation of 
tilt-rotor motion was desired, the following formulation aims at a rapid calculation rather 
than an exact solution. Arbitrary wing or rotor-blade motion is treated as a superposition 
of harmonic motions for a short interval to make the calcylation simple. Then, for each 
harmonic motion, wing theory in harmonic motion is applied. 

Wing lift I, and pitching moment me consist of three components: steady components 
I, and m,, harmonic components l k  and mk, and virtual-mass components I, and mu: 

As the shed vortex distribution depends upon the history of the wing motion the wing 
deformation and its derivatives are expressed as a series of harmonic components, using 
their previous values: 

k 

k 

k 

k 

Pw = Pwo + p w k e i w k t  (134) 
k 

p w  = pwo + C p w k e i W k t  

k 
(135) 
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where variables with a bar represent complex numbers. 

The boundary condition at the position bc,  from the leading edge is 

U = -ti, + p w ( b  - a,)c,  + (V + Ww)(8, + p w )  (136) 

When the deflection and its time derivative are assumed to be small, the equation is 
linearized as 

(137) 
- - I  - 

U = -U, + p w j b  - awjcw + v (e, + p,j + W,e, 

The steady lift component is calculated through Weissinger's concept. At the three- 
quarter chord line, the downwash velocity is given by 

2io.75 = -c 'y + &,,(0.75 - a,)cw + v(e, + p , )  + zir,e, (138) 

Since this value is dependent upon time, it is not directly used in the boundary condition 
for the air loading calculation. The steady component of the air loading is calculated using 
the constant term of this air velocity as the boundary condition in a vortex lattice method 

Steady pitching moment around the elastic axis rn, is attributed to wing airfoil shape and 
is given using the pitching-moment coefficient for a steady airfoil 

1 
2 

m, = -pV2c;Cm - 1,(0.25 - u,)c, 

The steady lift given in this way is accurate in the sense that the shed vortex effect does 
not exist and that the trailing vortex effect is included. 

The unsteady components (harmonic components and virtual mass components) are 
more difficult to estimate. Even under the assumptions just given (sinusoidally oscillating 
air loading), there is not an easy and versatile calculation method which properly includes 
shed vortex and trailing vortex effects. As stated previously, this study aims at  the efficient 
timewise calculation of tilt-rotor motion. Air loading f k ,  caused by the kth harmonic 
motion is calculated using a two-dimensional theory. Aspect ratio and spanwise location 
are taken into account by multiplying f k  by a factor q :  

r n k  = - l k ( 0 . 2 5  - U,)Cw 
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where C ( w k c w / 2 V )  is the Theodorsen function, and the factor q is given by 

rl = 111q2 (143) 

The variable ql is the correction for finite aspect ratio A,, and 112 is calculated under an 
assumption that this air loading is distributed elliptically along the span. The air loading 
caused by the virtual mass motion is also given by two-dimensional theory with the same 
correct ion: 

1" = 4 1 2  $13) 

mu = q(m2 + m3 + m4) 
2 

12 = p7r (2 )  (-4, + (0.5 - a w ) c W ~ , )  

2 
1 3 = p 7 r ( ? )  vp, 

m2 = -12 (0.25 - a,) c ,  
m3 = -13(0.75 - a,)c, 

1 4 
m4 = -2" (F) P U P  

(149) 

Drag is calculated using a drag coefficient 

These equations give the lift, drag, and pitching moment, but not the directions of 
lift and drag. In the case of lifting-surface theory, the most accurate expression of lift 
and induced drag is the sum of integration of lift along the chord line and leading-edge 
suction. Because of the simplification, where the chordwise distribution of bound vortex is 
not taken into account, this expression is not available in the present method. The most 

29 



suitable form for this simple case is that the lift is inclined backward by an amount, equal 
to the angle between the free flow and the lifting line (the same expression as that in simple 
lifting-line theory). It is sometimes discussed in the term of induced drag, and it is known 
that the estimation of induced drag is difficult even in a complete lifting surface theory. 
The lift and drag values are converted into air-load components in z and z direction (1 ,  
and I t )  

1 ,  = 1 cos&, - dsincp, 
I ,  = -1  sin 4, - dcos 4, 

The calculation of lift-inclination angle 4, is given in appendix C with the formulation of 
a vortex lattice method. 

The blade air loading calculation is similar to that of the wing, except that it is based 
on the local circulation method instead of a vortex lattice method and that it lacks the 
torsional degree of freedom. The details of the local circulation method are described in 
refernces 2 and 3. Here the method used in the unsteady modification is stated. Among 
two dimensional theories of harmonic air loading, Theodorsen’s and Sears’ theories are 
widely used. Blade deflection in two directions, in plane and out of plane, is treated just 
like the wing case. Apart from the deflection, the blade encounters the induced velocity 
field made by the returning vortex; hence the local circulation method is better explained 
by the Sears’ theory. However, as stated previously, because this model does not have 
a pitching degree of freedom, and because the Sears function can be approximated by 
the Theodorsen function when reduced frequency is small, this remaining induced velocity 
is included in the boundary condition on the blade element. Harmonic air loading is 
calculated using Theodorsen’s theory in this study (reference 12). The air loading caused 
by virtual-mass effects is added afterward, because the relation of induced velocity and 
circulation is given by the quasi-steady assumption; thus, it does not contain virtual mass 
or acceleration terms at all. In this calculation, variation of pylon direction is assumed to 
be small, so rotor-blade air loading is calculated using the theory for axial flight. 

The components of blade lift are steady lift, harmonic lift, and virtual mass lift 

k 

The blade motion relative to the air is composed of cruising velocity, rotating velocity, 
induced velocity, and blade- and wing-deformation velocity (figure 6 ) .  These velocities 
give the geometrical angle of attack at the elastic axis as 

(YG = 0 -- 4 -  
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V 4 = tan-' - 
rR 

When 6, is written in terms of in-plane and out-of-plane deformations equations (158) 
becomes 

(161) 
ut 
U 

a G = e - 4 - -  

ut = (us - w - w, - rri, sin $n + rfi, cos$n) cos 4 
+ [6 + rfi, + ( -Gw - hljp + V v p )  sin $Jn + (-hfi, + Vv,) cos$J,] sin 4 (162) 

This geometrical angle of attack is written in Fourier series, based upon its past values 

aG = aGO + &Gkeiwk t .  (163) 
k 

For the steady component Q G O ,  the conventional local-circulation method with the Prandtl- 
Glauert rule is applied, and the following equation is satisfied at each control point: 

where Av and A? are the induced velocity perpendicular to local airflow and the circulation 
of the hypothetical wing, respectively. 

The sinusoidal component of the air loading is given by two-dimensional theory, with- 
out considering the effect of compressibility, but with corrections, similar to the wing-air 
loading case, for aspect ratio and spanwise location: 

(165) 
f k  = -pu 7 2  CCIac (7) Wk Cw &Gkeiwkt  

2 

A 
71= 2 + d G T  

R -  R,  A = - - -  
C 

2r - ( R  + R,) 
R - R ,  '= 
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Theodorsen’s theory treats both the pitching motion and the heaving motion of a wing. 
The relative velocity of the blade to the air varies along the chordwise position because of 
pitching motion. Since the rotor blade model does not have a pitching degree of freedom, 
virtual-mass terms are assumed to be related to the acceleration of the blade elastic axis 
neglecting blade pitch motion. 

This equation concludes the air loading calculation. The virtual work required to 
complete the equations of motion can now be calculated by equations (27) through (29). 
Timewise integration is carried out using a Runge-Kutta-Gill method. By conducting 
timewise calculations both with and without the feedback system, the effectiveness of the 
feedback system can be evaluated. 

NUMERICAL RESULTS 

The methods of control law determination and the timewise calculation just given 
are applied in this section. The specifications of the model aircraft used in numerical 
calculations are given in table 1 and in figures 7 and 8. Blade pitch angle is chosen to 
give the thrust of 7,000N at the design advance ratio V/RR = 0.7 and such that the 
thrust changes proportjonally to the square of cruising speed. Trim thrust and pitch angle 
determined in this way are given in figure 9. 

Figure 10 presents the change of the real part of the eigenvalues as a function of aircraft 
cruise velocity. This figure shows that this model remains stable for advance ratios up to 
1.8. 

To investigate the feedback-control efficiency, the stiffness of the considered tilt-rotor 
model is reduced. Because flutter peculiar to the tilt-rotor aircraft is the major concern in 
this report, the wing stiffness was reduced to one-eighth of the baseline model for all the 
degrees of freedom in the wing, while the rotor-blade stiffness is assumed to be unchanged. 
Natural frequencies and mode shapes employed in the eigenvalue analysis are given in 
Figures 11 through 15 for the new rotor/wing model. These modes are attributed to 
blade-in-plane, blade out-of-plane, wing-upward, wing-forward, and wing-torsional degrees 
of freedom, respectively. Figure 16 gives the real part of the eigenvalue as a function of 
advance ratio V / n R  for the reduced stiffness model. An eigenvalue will become unstable 
when the advance ratio exceeds about 1.5. 
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For further numerical results, an almost critical case in which the advanced ratio 
is equal to 1.5 is chosen and the design of a control law is investigated. In the previous 
section, input to  the feedback system as a function of wingtip upward and forward bending 
and torsion was described. Using all of these parameters is not necessary in the present 
case. When selecting one or more of the parameters, the eigenvector and mode shape 
corresponding to the unstable mode is of greatest importance. The two eigenvectors which 
have the greatest real part at the advance ratio of 1.5 are given in figure 17. Among the 
elements of the eigenvector, only the elements which have absolute values of more than 5% 
of the largest element value are shown in this figure. The critical element is attributed to 
the wing’s second lowest natural frequency and the other element to the the wing’s third 
lowest frequency. Wing second and third modes correspond, in turn, to forward deflection 
and torsion, respectively, as seen in Figures 14 and 15. To stabilize or to augment the 
stability of these modes, feedback of dominant deformations are expected to  be effective. 
As the simplest case, paying attention to the least damped mode only, velocity of the wing 
forward bending ti,,, is chosen as an input for the feedback system, which means all the 
feedback gains except for Kwsd and K w c d  are equal to zero. 

Figure 18 shows the effect of feedback on the real part of the systems eigenvalues. Only 
those eigenvalues that have a real part greater than -1.0 are shown among the eigenvalues, 
since highly damped modes need not be considered. The imaginary parts (frequency) of 
the eigenvalues change at most 2% when the feedback gain changes from 0.0 to  -0.05. 
The eigenvalues without feedback are given along each line. The dominant, generalized 
coordinate corresponding to each eigenvector is also given along each line in parentheses. 
All the modes are simultaneously stabilized when feeding back the cosine term of cyclic 
pitch. Some modes are stabilized yet others are destabilized in case of feedback with 
the sine term of cyclic pitch. Feedback of the sine term of cyclic pitch works about as 
well as that of the cosine term as far as the critical mode (Q, wing forward bending) is 
concerned. However, sine feedback is unfavorable, in that the two modes which have the 
largest eigenvalue real part cannot be stabilized simultaneously. From figure 18, feedback 
of the cosine term of cyclic pitch is expected to work better than the sine term of cyclic 
pitch does. Consequently the feedback gain to the cosine term KwCd is set to -0.03 for 
evaluation of this control system. 

Timewise calculation are made to see whether the feedback system just discussed is 
effective. Calculations are carried out without introducing rotor-blade or wing elasticity 
for the first five revolutions of the rotor rotation to get the air loading in an almost 
equilibrium state. The full equations of motion are employed after five revolutions; thus, 
the initial conditions for these equations are the deviations from the deflected equilibrium 
state. Figures 19 through 24 show the results for all the degrees of freedom both without 
and with feedback control. The abscissa is the number of rotor revolutions after elasticity 
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is introduced. The results for 100 revolutions, or approximately 15 sec, are given. With no 
feedback control, the wing-upward deflection appears to  be converging (figure 19) because 
the lowest damped modes are dominated by generalized coordinates uz and u3 (wing- 
forward deflection and wing torsion). Wing-forward deflection (figure 20) and wing torsion 
(pylon-pitch angle; figure 21) show oscillation with almost constant amplitude with no 
feedback. Blade deformations do not appear to  converge without control in spite of the 
fact that the lowest damped modes are not characterized by blade deflection. 

Once feedback control is introduced (zb, feedback with k,,d = -0.03) wing-forward 
and wing-torsional deflections are stabilized (Figs. 20 and 21). Stabilization is expected 
because these deflections are characterized by the two lowest damped eigenvalues and 
the real parts of each value are significantly reduced (stabilized) with the introduction of 
feedback control. The wing-upward deflection does not show an improvement because the 
eigenvalue, characterizing this motion (w = 6.0 r a d / s e c )  is not affected by the introduction 
of feedback to the cosine term. The amplitude of blade-out-of-plane deflection becomes 
smaller since the eigenvalue for that mode (w = 62.3 rad/sec)  is changed by the control. 
The cyclic-pitch angle (figure 24) is sufficiently small so that there is additional control 
capability for stabilizing less stable flight conditions or for stabilizing oscillations of greater 
amplitude. From this time-history analysis, this control system has been proved to work as 
it should, and it would be expected to  work as well under less stable operating conditions. 

CONCLUDING REMARKS 

Tilt rotor flutter control was investigated. The determination of the control law was 
based on a harmonic-balance method using a simple aerodynamic theory. It was confirmed 
that the stability of tilt-rotor motion is improved by using closed-loop, cyclic-pitch control. 
The validity of the control law determined in this way was demonstrated by a timewise 
calculation in which more sophisticated aerodynamics were considered. The selection of 
the feedback gain and the placement of the sensor were not based on any specific criterion. 
Establishing the optimal gain is left to future study. 
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APPENDIX A 

Expressions for KLnj,  KBnj, K i ,  K,& and K6 

Rotor-blade loading pen and pzn are expressed in harmonic terms. 

Pen = P ~ O  + pes sin lCln + ~ e c  COS $n 

pzn = P ~ O  + pzs sin $n + pzc COS $n 

Moreover the variables pea, pes, P O , ,  p , ~ ,  p,,, and p,, are subdivided into pitch-angle 
and generalized-coordinate terms: 

2 3 

j = l  j=1 

2 2 

j = l  j= 1 

3 3 

j=1  j = 1  

2 2 

j = 1  j= 1 

3 3 

j=1  j= 1 

2 3 

j = 1  j= 1 

2 2 

j = l  j= 1 

3 3 

j= l  j = l  

2 2 

+ ( ~ z c c e c  + Pzccjj,.Qjc + pzcqJr qjs 
j= 1 j= l  

3 3 

j = l  j = l  
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1 pv;cc1, cos q5 2 d m  P z c c  = 

Substituting these relations into equation (29) yields 
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APPENDIX B 

Matrix Elements of Final Equations 

The following matrix elements for equations (112) through (114), with an exception 
for E&, are given for: a = 1,2; J' = 1,2; k = 1,3; and 1 = 1,3: 

E ? .  ' t t  

Egi - 2 ,  k +G 

Eii- l,k+G 

Egi, k+G 

Ek+G,3i-2 
2 

2 
Ek+G,3i-1 

= 1  ( 2 = 1 - 9 )  

= Q f k  

N 
2 

- - -Ati 

N = 2 
Ek+G,3i 2 

EkO+G,3i 

E:+G, k+G 

ECj(if not given above) 
D,,j(if not given above) 

0 
0 
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APPENDIX C 

Vortex Lattice Method for Wing Aerodynamics 

Figure C1 shows the tilt-rotor-wing coordinate system for the bound-vortex calcula- 
tion. Only the right half wing is shown because the whole wing is assumed to be symmetric. 
The semispan wing is equally divided into k segments and the vortex 67; is trailed from 
the outer edge of the ith segment. Downwash at the ith control point vi is given as 

where Bij67j is the induced velocity on ith control point by the trailing vortex from the 
outer edge of j t h  segment. The wing’s mirror image and corresponding bound vortex 
connects the upper two trailing vortices. The coefficients Bij are given by 

where zc is the distance between the bound vortex and the control point and is equal to 
the semi-chord, ybj is the distance of j t h  segment outer edge from the center of whole wing, 
and yci is the distance of the ith control point from the center of the whole wing. Writing 
the boundary condition (i.e., downwash on the ith control point) as b;, the equation which 
connects the intensity of each trailing vortex and the boundary conditions is given by 

Bii B12 ... Bik 
B21 B22 . . . B2k 

Bkl Bk2 B k k  

The intensity of the trailing vortex is given by 

= (B) - ’  (?) 
67k 
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The intensity of the bound vortex in the j t h  section 7 b j  is 

BOUND VORTEX 
25% CHORD LINE 

A 

Finally, the lift distribution in ith section l i  is 

b 

b 
ok 

TRAILING VORTEX 6yi 

.i (CONTROL POINT) 
b 

To determine the direction of the lift, the induced velocity on the bound vortex Ubi  needs to 
be determined. The lift is caused by the trailing vortex only, since a straight and unswept 
wing is considered. The equation for the induced velocity is 

The backward inclination of lift &, is given by 

I 
dICr 

II 

a 

i I1 .- 
0 

i - 
1 

x c = p v  

Figure C1.- Vortex lattice geometry for wing aerodynamics. 
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TABLE 1.- SPECIFICATION OF BASELINE TILT ROTOR MODEL. 

ROTOR 
number of blades, N 3 
radius, R 3.81 m 
cutout, R, 0.15R 
chord, c 
solidity, u 0.076 

drag coefficient, Cd 0.0125 
rotational angular velocity, R 
blade-flapping inertia, IB  
blade mass, MB 42.9 kg 

0.356 m 

lift slope, Cl, 5.73 

40.4 rad/sed (386.0 rpm) 
176.1 kg - m2 

WING 
semispan, L 
chord, c, 
geometric angle of attack, QW 
lift slope, Cia 
drag coefficient, Cd 

pitching moment coefficient, C, 
position of elastic axis from leading edge, a, 
position of center of gravity from leading edge, cg 

PYLON 
mass, M p  
mast height, h 
pitching mass moment of inertia, IPp 
rolling mass moment of inertia, I,,. 
yawing mass moment of inertia, IpY 

5.08 m 
1.58 m 
2.7' 
5.73 
0.004 
-0.005 
0.26 
0.26 

644.0 kg 
1.3 m 
257.6 kg - m2 
57.5 kg m2 
223.4 kg - m2 
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BLADE n 

Figure 1.- Tilt-rotor model. 

Figure 2.- Coordinate system and pylon rotations. 

44 



ow + pw 

z 2 AFTER 

T R M A T ' O N  / 

a.- Wing. 
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Figure 3.- Wing and blade deformation. 
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Figure 4.- Rotor azimuth angle and pylon rotation. 
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Figure 5.- Air-loading geometry on wing and blade. 
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Figure 6.- Airflow and blade motion geometry. 

1 
E > 20 

E 
1 

10 

n 

2.9 x 105 

2.7 

cy 
E .6 z 
a - 

W 
.4 

2 

0 

- 
.15 25 .5 .75 1 .o 

r/R 

a.- Mass and twist. 

0 
m 
c) 

m 
20 - 
0 

i .25 .5 .75 1 .o- 
BLADE STIFFNESS 

b.- Stiffness. 

Figure 7.- Blade structural properties. 
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Figure 8.- Baseline-wing structural properties. 
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Figure 10.- Real part of eigenvalues for baseline-wing configuration. 
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Figure 11.- First blade mode shape; w1 = 37.6 rad/sec. 
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Figure 12.- Second blade mode s.hape; w2 = 60.6 rad/sec. 
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Figure 13.- First wing mode shape; w W l  = 6.19 rad/sec. 
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Figure 14.- Second wing mode shape; w,p = 11.2 rad/sec. 
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Figure 16.- Real part of eigenvalues for one eighth stiffness wing configuration. 
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Figure 17.- Eigenvectors without fee'dback for lowest damped modes; V / Q R  = 1.5. 
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Figure 18.- Real part of eigenvalues with wing feedback; V/RR = 1.5. 
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b.- Feedback control; KWcd = -0.03. 

Figure 19.- Wingtip upward deflection. 
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b.- Feedback control; KWcd = -0.03. 

Figure 20.- Wingtip forward deflection. 
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b.- Feedback control; KWCd = -0.03. 

Figure 21.- Pylon-pitch angle. 
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.b.- Feedback control; KWcd = -0.03. 

Figure 22.- First-blade inplane deflection. 
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b.- Feedback control; Kwcd = -0.03. 

Figure 23 .- First-blade out-of-plane deflection. 
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Figure 24.- Cosine cyclic-control pitch used for feedback; K w c d  = -0.03. 
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